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INTRODUCTION 

 

This White Paper describes highlights from a report for Water Research Foundation 

(WaterRF) project 4285 having the same title, which investigated ways for coastal utilities to 

assess the risk to their water supplies if climate change and seal-level rise. In addition to 

WaterRF, the project was co-sponsored by Beaufort-Jasper Water and Sewer Authority 

(BJWSA) and the National Oceanic and Atmospheric Administration. It was performed as 

collaboration among Advanced Data Mining International, LLC (ADMi), the U.S. Geological 

Survey (USGS), the University of South Carolina (USC), and the South Carolina Sea Grant 

Consortium (Sea Grant). 

There are many theories of causes behind climate change but little disagreement that it is 

happening. Climate change and sea-level rise will alter hydrologic patterns, resulting in changes 

in salinity intrusion dynamics along coastal rivers where many utility intakes are located. The 

increase in the degree of saltwater intrusion along the Georgia and South Carolina coasts during 

the Southeast’s record-breaking drought from 1998 to 2002 illustrated how climate change and 

sea-level rise increase the threat to freshwater estuarine intakes, showing the need of utilities for 

reasonable estimates of future changes in the frequency, duration and magnitude of salinity 

intrusion near their water intakes. The objectives of this project were to: 

 

 Develop an approach, or template, that coastal utilities can use to evaluate the threat from 

climate change and sea-level rise to their freshwater estuarine intakes; 

 Demonstrate the effectiveness of the approach by applying it to two separate estuarine 

systems in Georgia and South Carolina. 

 

ADMi and the USGS had previously developed specific-conductance models of the 

Lower Savannah River and Grand Strand region estuarine systems (Conrads et al. 2006, Conrads 

and Roehl 2007), in which reside two and three municipal freshwater intakes, respectively. The 

models convert inputs that primarily represent freshwater streamflow and sea level into 

predictions of specific conductance at several locations. In both systems it was found that the 

relationships between sea level, freshwater streamflow, and salinity intrusion are complex and 

nonlinear, and that weather extremes such as droughts and increased sea levels brought by 

hurricanes can produce large intrusion events. It is possible that the negative impacts of climate 

change on utilities could be exacerbated by increasing inter-annual climate variability 

(specifically, more droughts), and increasing fresh water demands from upstream farms, 

industries and water utilities.  

The Savannah River estuary is a deltaic system that branches into a series of 

interconnected distributary channels (Figure 1). Among the area’s most important resources are 

the Savannah National Wildlife Refuge and the nearby port terminals of the Savannah Harbor. 

http://www.advdmi.com/
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Two municipal water intakes are located in the freshwater portion of the upper estuary. The City 

of Savannah maintains an intake on the Abercorn Creek tributary, approximately 1 mile 

upstream of USGS gage 02198840, which provides specific conductance and water level 

measurements. The intake for the Beaufort-Jasper Water and Sewer Authority is located at a 

canal off of the Savannah River approximately 15.5 river miles upstream of 02198840. 

 

 
 

Figure 1. The Lower Savannah River. 

 

The salinity model used in this project was originally developed to evaluate the impact of 

a proposed deepening of the harbor on the Refuge and other areas, and is named the Savannah 
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River Model-to-Marsh (M2M). The USGS gaging stations on the Savannah River near Clyo, Ga. 

(02198500) and at Fort Pulaski (02198980) provided the data representing the model’s input 

boundary conditions. 

 
Figure 2. Lower Pee Dee River, AIW, and Waccamaw River estuarine system. 

 

Figure 2 shows the second study area, which is the estuarine system composed of the 

Lower Pee Dee River, the Waccamaw River tributary, and the Atlantic Intracoastal Waterway 

(AIW). The Pee Dee River, named the Yadkin River in North Carolina, flows through several 

hydroelectric facilities, the last being approximately 15 miles upstream from the state border. 

The reach of the AIW from just south of Little River Inlet to just north of Hagley Landing 

provides freshwater for the coastal communities of the Grand Strand. Three municipal surface-

water intakes are in the tidal, freshwater portions of the system. During a drought from 1998 to 

2002, salinity intrusion forced the intake near USGS gage 021108125 to close until increased 

streamflow moved the freshwater-saltwater interface downstream. 
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Figure 2 also shows the U.S. Geological monitoring sites on the Waccamaw River and 

AIW that provided much of the data used to develop the specific-conductance model, which is 

named the Pee Dee River and Atlantic Intracoastal Waterway Salinity Intrusion Model 

(PRISM). The model was developed to support the process of the relicensing of the hydroelectric 

facilities by the Federal Energy Regulatory Commission, which occurs at 50-year intervals. 

 

APPROACH 

 

M2M and PRISM are actually decision support systems (DSS) that integrate several 

empirical specific-conductance sub-models, the real-time databases needed for running 

simulations, graphical user interfaces (GUI), and streaming graphics. The DSSs are Microsoft 

Office Excel™ applications that are easily distributed and immediately usable by all water-

resource managers and other stakeholders. Deploying the models in this form provides resource 

managers of varying computer skills with equal access to the scientific knowledge is needed for 

them to make the best possible decisions (Roehl, Conrads, and Daamen 2006). 

The original DSSs were redeveloped using additional field data, and modified to allow 

users to modulate the sea level input and unregulated flows. The modified DSSs were renamed 

M2M-2 and PRISM-2. The data used to develop the M2M sub-models and run simulations spans 

11 years from 1994 through 2005. The PRISM-2 data spans 14 years from 1995 to 2009. Both 

data sets incorporate a broad range of climate and sea level behaviors, including record droughts, 

high rainfall periods of El Niño climate periods, and hurricanes, which can greatly increase sea 

levels. Developing the empirical sub-models from this range of data makes them more applicable 

to studies involving climate change and sea-level rise scenarios. 

The sub-models were developed using multi-layer perceptron (MLP) artificial neural 

network (ANN) models which are commonly used for process engineering applications (Jensen 

1994). They synthesize nonlinear functions to fit multivariate data, and offer significant 

advantages in modeling estuary hydrology versus traditional mechanistic modeling codes, 

including prediction accuracy, speed of development, execution speed, and breadth of 

deployment options (Conrads and Roehl 1999; Conrads and Greenfield 2008). 

 

Forecasting the Impact of Climate Change at an Intake 

 

Estuary salinity variability is largely driven by streamflow and tidal water-levels, and 

climate change will affect both. To forecast future streamflows, global circulation, regional 

circulation, watershed runoff, and salinity intrusion models need to be integrated (Figure 3). 

Global circulation models (GCM) make large scale (>250 square kilometer grid) estimations of 

precipitation and temperature conditions for various carbon emission scenarios. These scenarios 

are typically 100-year projections to the future. To generate precipitation and temperature 

predictions for a watershed (approximate 12 square kilometer grid), the GCMs are coupled to 

regional circulation models that generate regional precipitation and temperature predictions, 

which are then input to a watershed model. The watershed model then predicts the streamflow 

inputs to an estuary model such as PRISM-2.  
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Figure 3. Conceptual approach for modeling the effects of climate change on salinity 

intrusion. 

 

 
Figure 4. Measured and HSPF-predicted Q at USGS 02131000. R

2
=0.85.  

 

The Pee Dee Basin streamflow forecast was generated by USC and Sea Grant for the 

years 2055-2069, 60 years from the start of the PRISM-2 study period. The forecast was made 

using the Hydrologic Simulation Program-Fortran (HSPF) watershed model from the U.S. 

Environmental Protection Agency, and the ECHO-G GCM (Legutke and Voss, 1999). It was 

used to predict future Pee Dee Basin streamflow (Q) from a climate forecast by ECHO-G for 

input to PRISM-2. The HSPF application was calibrated using approximately 30 years of 
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historical climate and Q data. PRISM-2 uses Q inputs corresponding to five gaging stations. 

Figure 4 compares predictions made by the HSPF application with the measured Q at USGS 

02131000 on the Pee Dee River.  

There are many existent GCMs, four of which were evaluated. ECHO-G was chosen 

because it predicted historical low flow conditions most accurately when coupled with the HSPF 

application. To predict future flows, ECHO-G was run with the A2 future carbon emissions 

scenario, which assumes that nations will continue to pursue their interests individually rather 

than cooperate in dealing with climate change (IPCC 2000). Alternative emission scenarios 

cause global circulation models to forecast different climates. 

 

RESULTS 

 

This section focuses on showing ways that large amounts of seemingly complex data can 

be reduced to forms that are readily understood by resource managers. It should be noted that the 

M2M-2 output is in practical salinity units (psu), and PRISM-2 outputs specific-conductance 

(SC) in micro-Siemens per centimeter (S/cm). The upper salinity limit for drinking water is 0.5 

psu, or approximately 1,000 S/cm. 

For the Lower Savannah River, Figure 5 shows the measured salinity at USGS gage 

02198840 with the freshwater Q at 02198500 for the 11-year study period. Figure 5 also shows 

the predicted salinity when historical input data is used, which is sufficiently accurate to largely 

obscure the measured values. At low Q, salinity spikes appear at 28-day intervals, coincident 

with the new moon and indicating the role of tidally-driven sea levels in intrusion events. Figure 

6 shows a detail of simulation results for three scenarios – historical Q (Q= 0%) with zero sea-

level rise (SLR) (same as the predictions in Figure 5), Q= 0% with a 1.0 ft SLR, and Q= -10% 

with a 1.0 ft SLR. The detail shows that a 1.0 ft SLR causes spikes to appear and that their 

magnitude and duration increase with a Q decrease. 

 

 
Figure 5. Measured and predicted salinity at USGS 02198840 with Q at 02198500. R

2
=0.81.  
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Figure 6. Detail of simulation results for three scenarios. 

 

 
Figure 7. Percentage of days that predicted salinity > 0.5 psu. 

 

Forty-two (42) scenarios were run in which SLR and Q were modulated parametrically. 

The output data were processed to calculate the percentage of study period days (%days) at 

which the salinity exceeded 0.5 psu. Figure 7 shows the results in tabular form and as a 3D 

surface. The table indicates that SLR increases the percentage more than Q reduction. For 

example, at Q= 0% and SLR= 3.0 ft., %days= 13.6. At Q= -25% and SLR= 0 ft., %days is 

only 1.0. The surface shows that %days increases linearly as Q becomes more negative, and 

exponentially with increasing SLR. The combined effect is that %days increases much more per 

decrement in Q at high SLR than at low SLR. For example, at SLR= 0 ft., the %days increases 

only slightly as Q decreases from 0 to -25%. At SLR= 3 ft., the percentage increases much 

more as Q decreases to -25%. Similarly, at Q= 0 ft., %days increases less as SLR increases 

from 0 to 3.0 ft than at Q= -25%. Given that the details of how climate change and SLR will 

evolve are uncertain, the kind of results shown in Figure 7, which are derived from a predictive 
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model that was developed from a large and widely ranging data set, are perhaps the most 

credible type of planning data available to resource managers in coastal areas.  

For the Waccamaw River, Figure 8 shows the measured SC at USGS gage 021108125 

with Q for the 14-year study period. Here Q is aggregated from streamflows measured at five 

upland gages. The measured SC starts at day 2,305. Also shown is the SC predicted by the ANN 

sub-model when historical input data is used. Three prolonged periods of high SC appear in the 

vicinities of days 2,300, 2,600, and 4,400, which coincide with periods of low Q. It is clear that 

the nature of salinity intrusion is very different from that at the 02198840 gage on the Savannah 

River (Figure 5), suggesting that details of the process physics that cause behaviors of interest 

can vary greatly location-to-location, and that it is critical that predictive models used as 

planning tools need be customized for each location.  

Salinity intrusion occurs when two of the following three conditions are met - low 

streamflow, high tidal range, and high mean sea-levels. In the Savannah River example, the 

salinity spikes in Figure 5 are of short duration and occur at 28-day intervals when Q is low and 

the gravitational forcing of the moon causes the tidal range to be high. High mean sea levels just 

increase the magnitude of the spikes. In the Waccamaw River example, the intrusions shown in 

Figure 8 are less periodic and of longer duration because the tidal range is less influential than 

streamflow and sea level. 

 

 
Figure 8. Measured and predicted SC at USGS gage 021108125 with Q. R

2
=0.86.  

 

Figure 9 shows simulation results for three scenarios – (1) historical Q (Q= 0%) and sea 

level (same as the predictions in Figure 8); (2) Q= 0% and sea level + 1.0 ft SLR; and (3) the 

ECHO-G/HSPF forecast Q with historical sea level + 1.0 ft SLR. The simulation period of (1) 

and (2) is 1995-2009, and 2055-2069 for (3). Scenario (2) indicates that the increased SLR 

increases the magnitude, duration, and frequency of SC spikes. Scenario (3) generally shows 

spikes occurring at times that are different from the first two scenarios, and are of shorter 

duration. 
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Figure 9. Simulation results for three scenarios.  

 

 
Figure 10. Percentage of days predicted SC exceeds 1,000 S/cm. 

 

Like the above Savannah River analysis, 42 Q/SLR scenarios were run to predict SC at 

021108125, and the percentage of study period days (%days) at which the predicted SC 

exceeded 1,000 S/cm was calculated (Figure 10). Similarly to the 02198840 gage (Figure 7), 

SLR affects %days more than Q; however, the surface is more planar, such that the effect of 

Q is relatively constant with increasing SLR. Figure 11 shows the number of predicted 

intrusion events when the predicted SC exceeds 1,000 S/cm for 7 consecutive days. This type 

of information indicates how frequently an intake might be inundated for extended periods, a 

major concern for utilities with limited source or storage options.  
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Figure 11. Predicted number of events when the SC > 1,000 S/cm for 7 consecutive days. 

 

Table 1 compares the percentages of study period days (%days) when the SC exceeded 

1,000, 2,000, and 3,000 S/cm for three cases, namely historical SC, SC predicted from 

historical Q and sea level, and SC predicted from ECHO-G/HSPF Q and historical sea level. The 

%days of the single historical SC scenario are comparable to the two prediction scenarios. The 

lower %days for the ECHO-G/HSPF Q scenarios relative to the SC-predicted-from-historical-

inputs scenarios are consistent with the above observations about Figure 9. 

 

Table 1. Percentages of days when the SC > 1,000, 2,000, and 3,000 S/cm. 

 
 

APPLICATIONS / RECOMMENDATIONS 

 

The general problem for water resource managers that want to plan for climate change 

AND sea-level rise is figuring out how it might specifically affect “their” resources. The problem 

is made seemingly intractable because the details about what, when, and how much are 

unknowable with any certainty. This project has demonstrated a pathway to be taken that 

produces tools that are straightforward to use and should be reliable if their limitations are 

respected. The tools are tables and graphics that predict how often and for how long intakes will 

be inundated by salinity intrusion for any reasonable combination of freshwater flow change or 

sea-level rise. There are similar analogs when the water resources are inland, such as lakes, 

streams, and groundwater, and the forcing includes anthropogenic demand.  
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The two essential elements that were extensively leveraged for both the Savannah and 

Waccamaw River intakes were: 

 

1. Long-term time series data - that captured a broad range of complex natural system 

behaviors, and inherently span much of the change that experts predict will come with 

climate change, as manifest in the ECHO-G A2 scenario. 

2. Predictive models - that accurately represent the process physics captured by the long-term 

time series data. 

 

#1 is of fundamental importance and obviously time-consuming to obtain if not already 

in hand. #2 can be developed at any time so long as a reasonable amount of data is available, and 

models are readily updated when new data becomes available. For some systems, such as 

estuaries, empirical models like those used here can be developed more quickly and be more 

accurate than conventional mechanistic modeling codes. Ideally, 1 and 2 are already available 

and merely need to be exercised to produce the tables and graphics needed by resource managers 

to begin assessing risk and planning for climate change.  
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